Numerical and perturbative computations of solitary waves of the Benjamin-Ono equation with higher order nonlinearity using Christov rational basis functions
نویسندگان
چکیده
Computation of solitons of the cubically-nonlinear Benjamin–Ono equation is challenging. First, the equation contains the Hilbert transform, a nonlocal integral operator. Second, its solitary waves decay only as O(1/jxj). To solve the integro-differential equation for waves traveling at a phase speed c, we introduced the artificial homotopy H(uXX) c u + (1 d)u + du = 0, d 2 [0,1] and solved it in two ways. The first was continuation in the homotopy parameter d, marching from the known Benjamin–Ono soliton for d = 0 to the cubically-nonlinear soliton at d = 1. The second strategy was to bypass continuation by numerically computing perturbation series in d and forming Padé approximants to obtain a very accurate approximation at d = 1. To further minimize computations, we derived an elementary theorem to reduce the two-parameter soliton family to a parameter-free function, the soliton symmetric about the origin with unit phase speed. Solitons for higher order Benjamin–Ono equations are also computed and compared to their Korteweg–deVries counterparts. All computations applied the pseudospectral method with a basis of rational orthogonal functions invented by Christov, which are eigenfunctions of the Hilbert transform. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
Solving Volterra's Population Model via Rational Christov Functions Collocation Method
The present study is an attempt to find a solution for Volterra's Population Model by utilizing Spectral methods based on Rational Christov functions. Volterra's model is a nonlinear integro-differential equation. First, the Volterra's Population Model is converted to a nonlinear ordinary differential equation (ODE), then researchers solve this equation (ODE). The accuracy of method is tested i...
متن کاملNumerical solution of Troesch's problem using Christov rational functions
We present a collocation method to obtain the approximate solution of Troesch's problem which arises in the confinement of a plasma column by radiation pressure and applied physics. By using the Christov rational functions and collocation points, this method transforms Troesch's problem into a system of nonlinear algebraic equations. The rate of convergence is shown to be exponential. The numer...
متن کاملAn approximation to the solution of Benjamin-Bona-Mahony-Burgers equation
In this paper, numerical solution of the Benjamin-Bona-Mahony-Burgers (BBMB) equation is obtained by using the mesh-free method based on the collocation method with radial basis functions (RBFs). Stability analysis of the method is discussed. The method is applied to several examples and accuracy of the method is tested in terms of $L_2$ and $L_infty$ error norms.
متن کاملOn the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation
We consider a two-dimensional generalization of the Benjamin-Ono equation and prove that it admits solitary-wave solutions that are analytic functions. We find the optimal decay rate at infinity of these solitary waves.
متن کاملApplication of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation
In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012